Distributed Storage Systems for Data Intensive Computing

Sudharshan S. Vazhkudai Ali R. Butt! Xiaosong Ma

Abstract

In this chapter, we will present an overview of the utilityd@dtributed storage systems in supporting modern appboat
that are increasingly becoming data intensive. Our coverafdistributed storage systems will be based on the reopargs
imposed by data intensive computing and not a mere summatgrae systems. To this end, we will delve into several as-
pects of supporting data-intensive analysis, such as datirg, offloading, checkpointing, and end-user accessrabi/tes
of data, and illustrate the use of novel techniques and nuetlogies for realizing distributed storage systems threrdihe
data deluge from scientific experiments, observationssamdlations is affecting all of the aforementioned dayd&y-oper-
ations in data-intensive computing. Modern distributemtage systems employ techniques that can help improvecapipln
performance, alleviate 1/0 bandwidth bottleneck, maskifas, and improve data availability. We will present keydijg
principles involved in the construction of such storageeays, associated tradeoffs, design, and architectursyighl an eye
toward addressing challenges of data-intensive sciergffigications. We will highlight the concepts involved gsseveral
case studies of state-of-the-art storage systems thatarerntly available in the data-intensive computing laraise.

1 Data Intensive Computing Challenges

The advent of extreme-scale computing systems, e.g., ®e&ipercomputers, cyber-infrastructure, e.g., Tera@rid
experimental facilities such as large-scale particleidets, are pushing the envelope on dataset sizes. Supeutoagp
centers routinely generate huge amounts of data, resdttimg high-throughput computing jobs. These are often tesul
datasets or checkpoint snapshots from long-running siinak For example, the Jaguar petaflop machine [9] at OaggeRid
National Laboratory, which is No. 2 in the Top500 supercotapias of this writing, is generating terabytes of user daise
supporting a wide-spectrum of science applications indfyshstrophysics, Climate and Combustion. Another exarigple
the TeraGrid, which hosts some of NSF’s most powerful supaputers such as Kraken [5] at the University of Tennessee,
Ranger [7] at Texas Advanced Supercomputing Center andvBaters at National Center for Supercomputing Applications
and are well on their way to produce large amounts of data.e#sing these national user facilities, is a geographically
distributed user-base with varied end-user connectrgggurce availability, and application requirements.h&tdame time,
experimentation facilities such as the Large Hadron CellilHC) [26] or the Spallation Neutron Source (SNS) [6, 25]
will generate petabytes of data. These large datasets acegsed by a geographically dispersed user base, oftes), time
high-end computing systems. Therefore, result output filata High-Performance Computing (HPC) simulations are not
the only source that is driving dataset sizes. Input datssare growing many fold as well [6, 26, 61, 4].

In addition to these high-end systems, commodity clusterpievalent and the data they can process is growing menifol
Most universities and organizations host mid-sized clsstmmprising of hundreds of nodes. A distributed user basges
to these machines for a variety of data intensive analysesoine cases, compute intensive operations are performed at
supercomputing sites, while post-processing is conduatéalcal clusters or high-end workstations at end-usertioes.
Such a distributed user analysis workflow entails intengf®e Consequently, these systems will need to support:

e the staging in of large input data from end-user locatiorehiges, expermental facilities and other compute centers

e the staging out terabytes of output, intermediate and gi@nksnapshot data to end-user locations or other compute
destinations

o the ability to checkpoint terabytes of data at periodicriveis for a long-running computation

o the ability to support high-speed reads to support a runappdication

In the discussion below, we will highlight these key datansive operations, the state-of-the-art and the chalteaige gaps
therein to set the stage for how distributed storage systam$elp in optimizing them.

*Computer Science and Mathematics Division, Oak Ridge Natibaboratory, Oak Ridge, TN 37831 USA vazhkudaiss@oonl.g
TDepartment of Computer Science, Virginia Polytechnicitug and State University, Blacksburg, VA 24061 USA butta@t.edu
*Department of Computer Science, North Carolina State Wsityema@cs.ncsu.edu

Data Staging and Offloading Large input, output and checkpoint data is required to bgestén and out of these systems.
With the exponential growth in application input and outgata sizes, it is impractical to store all user data indefiyiat
HPC centers. Traditionally, centers have operated unageptémise that users come to them with all of their storage and
computing needs. The legacy of this approach still weiglavihewhen it comes to provisioning a center as significant
portions of the operational budget is spent on large datestand archives. End-user data services such as staging and
offloading are key 1/0O operations that can help streamliméesescratch space consumption and improve its serviggabil

Timely data offloading is necessary to both protect the joipuatudata from center purge policies [3, 1] as well as to to
deliver data on a deadline. This is largely left to the useriara manual process, wherein users stage out result-datp us
point-to-point transfer tools such as GridFTP [16l,t p, hsi [33], andscp. The inherent problem with several point-to-
point transfer tools, used to offload data from supercompuie that they are only optimized for transfers between two
well-endowed sites. For example, the TeraGrid [10] offexsesal optimizations (TCP buffer tuning, parallel flows;.gfor
GridFTP transfers between the various site pairs that mpkbeiTeraGrid, which are already well connected (10-40 Gbps
links). In contrast, data staging and offloading involvevyiding access to the data to the end-user. How does one mtwe da
efficiently from well-provisioned HPC centers to the ougsidorld? More often, users come from smaller universitias an
organizations with varied connectivity to the HPC centdmg, efficient and timely staging and offloading of data cabeo
ignored as a “last-mile” issue.

The need for such a service is also fueled by the, oftenjldiséd nature of computing services and users’ job workflow,
which implies that data needs to be shipped to where it isethdebr example, several HPC applications analyze inteiateed
results of a running job, through visualizations, to stuuky validity of initial parameters and change them if needTigs
process requires the expeditious delivery of the resub-ttathe end-user visualization application for onlinedtesck. A
slightly offline version of this scenario is a pipelined exton, where the output from one computation at supercoarput
site A is the input to the next stage in the pipeline, at sittdge-scale user facilities such as the Spallation Neubaurce
(SNS) [6] and Earth System Grid (ESG) [2] that employ disti#nl workflows are already facing these problems and require
efficient data staging and offloading techniques.

The inverse of delivering data to the end-user is to stagel#tte from a source location to an HPC center. Modern
applications usually encompass complex analyses, whichra@lve staging gigabytes to terabytes of input data, gisin
point-to-point transfer tools (e.g., scp, hsi [27]), frolveervations or experiments. Many times, the applicatitstsiavolve
comparing the above analyses data against large-scaléasimnuresults to see how theoretical models fit real expenim
tal results. Thus, input data can originate from multipléadsources ranging from end-user sites, remote archivgs (e.
HPSS [27]), Internet repositories (e.g., NCBI [49], SDS$]]6collaborating sites and other clusters that run piedele
job workflow.

Once submitted, the job waits inkmtch queuet the HPC center until it is selected for running, while thput data
“waits” on the scratch space. HPC centers are heavily crdvadel it is not uncommon for a job to spend hours—or even
days on end—in the queue. The time a job takes to completg(vi@ll_time + waittime), is also the time the input data
spends in the scratch space, in the best case when the dédges sit job submission. In the worst case, which is more
common, the data waits longer as users conservatively (allghstage it in much earlier than job submission, let alfoie
startup. Thus, there is the need for a timely staging in ofijput data so it is able to minimize resource consumption and
exposure of data to failure.

From the above usecases, we can state the proble@ffhsad by a specified deadline to avoid being purded Deliver
by a specified deadline to ensure continuity in the job workfltlow can distributed storage systems help address this
problem? Solutions in this regard can have a profound impaciata intensive computing.

Checkpointing Checkpointing is an indispensable fault tolerance team@dopted by long-running data intensive appli-
cations. These applications periodically write large wods of snapshot data to persistent storage in an attempptorea
their current state. In the event of a failure, applicaticeeover by rolling-back their execution state to a previpgaved
checkpoint.

The checkpoint operation and the associated data haveeaunliaracteristics. First, applications have distinct phas
where they compute and checkpoint; often, these phases atcegular intervals. Second, checkpointing is a write 1/O
intensive operation. For instance, consider a 10,000 adrelat runs for 12 hours and checkpoints every half hour on
a system which has 2 GB of memory. For this job, in the worse caden all of the memory per core is saved as state
information, 500TB of checkpoint data is produced duringm ISuch data volumes can overwhelm any storage system. As
we scale to petaflop systems, this problem is likely to geteaaith the increase in the number of computing cores and the
amount of data to be saved at each timestep. Under thesdiocasdhigh-resolution checkpointing can easily overwitie
I/O system. Third, checkpoint data is often written oncegad only in case of failure. This suggests that checkpuoiagies

are seldom accessed beyond the lifetime of an applicatiooreven during the run. Finally, checkpointing, howevéiaal
it may be for reliability, is pure overhead from an applicatstandpoint, as time is spent away from useful computation

Data intensive applications usually deal with checkpamtperations in the following ways. First is node-localatge.

It is common practice for jobs running on the individual nedie a distributed computing environment (e.g., cluster or a
desktop grid) to checkpoint to their respective node-lst@iage. Local storage is dedicated and is not subject watheries

of network file system I/O traffic. Moreover, local 1/0 on everderately endowed desktops offers around 50-100MB/s.
However, local storage is bound to the volatility of the cartgonode itself. Thus, the locally stored data is lost when th
node crashes. Moreover, there is no node-local storagetoenex-scale machines as the the disk is one more component
that can fail.

Second is shared file systems. Compute nodes can also cliréickpa shared, central file server. However, shared file
servers are crowded with 1/0 requests and often have lingpatte. Shared file servers, accessible to desktop grid-like
distributed environments, offer merely tens of MB/s as |&ndwidth. Clusters usually employ sophisticated SAN gfera
that are able to offer higher throughput. However, the hedsrof nodes in a cluster, on which processes of a parallel
application run, can flood the central server with simultarsecheckpointing I/O operations. In extreme-scale systavith
thousands of processors—the 1/0 bandwidth bottleneckieckpointing in writing to central file system (albeit a ghaidile
system), can be profound. Even though parallel file systengs, Lustre, PVFS, GPFS) offer high I/O throughput (order o
tens of GB/s in extreme-scale systems), historically, l[&ddwidth has not scaled with processor frequencies. Furtinen
the 1/0 channelis shared across multiple applicationstieetive throughput achieved by any given applicationiigantly
deteriorates, even in such high-end storage systems. Gahdistributed storage solutions help improve the 1/O lveidth
bottleneck seen in checkpointing 1/0?

End-User Analysis For most end-users of scientific data, certain stages afdhaé intensive tasks often require computing,
data processing, or visualization at local computers aghl-bind personal desktop workstations. A local workstasand

will remain an indispensable part of end-to-end scientifickflow environments, for several reasons. First, it presidsers
with interfaces to view and navigate through data, such ag@s, timing and profiling data, databases, and documents.
Second, users have more control over hardware and softwaileed personal computers compared to on shared high-end
systems (such as a parallel computer), which allows mucatgrexibility and interactivity in their tasks. Third, genal
computers provide convenience in connecting users’ coimgirtsualization tasks with other tools used daily in theork

and collaboration, such as editors, spreadsheet toolshregisers, multimedia players, and visual conference téoially,
compared to high-end computing systems that are often tougist for years, desktop workstations at research irnistits

get updated more often and typically have higher computeepthan individual nodes of a large, parallel system. This
is especially advantageous for running sequential programd there exist many essential scientific computing tibals

are not parallel. Applications that were once beyond theabiity of a single workstation are now routinely executed
on personal desktop computers. The combination of fast ORRUlarge memory provides scientists with a familiar—yet
powerful-computing platform right in their office.

While personal computers are up to their important rolesciargific workflows with advantages in human-computer
interface and processing power, storage nowadays uswedbynies their limiting factor. Commodity desktop computees
often equipped with limited secondary storage capabihity l#O rates. Shared storage in university departmentsesgarch
labs are mostly provided for hosting ordinary documenté siscemail and web-pages, and usually comes with small quota,
low bandwidth, and heavy workloads. This imbalance betwsmsnpute power and storage resources leaves scientists with
the unattractive choice of remote data access when progedatasets larger than their workstations’ available dizkce.
However, the wide-area network latencies kill performanétw can distributed storage systems help sustain end-user
analysis on high-end local workstations?

2 Demands and Requirements for Distributed Storage Systemas Data Intensive Science

Distributed storage is an increasingly important compéonéend-to-end scientific computing workflows, due to thd fac

that most of such workflows are inherently distributed thelwes. In the majority of cases, data acquisition sitesdontagory

or experimental instruments), supercomputers or largetels, and scientific data centers are located outside erfitists’
local organization and must be accessed remotely. Dataaeddy the data collection, experiment, or simulatiorcpsses,
on the other hand, will not be stored on the data generatienwhose storage facilities are often precious sharediress
and only used for transient data storage to help the actskes tainning on the facility. Scientific computing users ligsua
have to move their data to their home institute for post-pssing, or on archival system for affordable long-termeger
or, as in many cases, both. Bringing data back to their |dcaters allows for more efficient data processing, analygsid
visualization, and eventually in most situations scieatiSew and interact with their data on their office worksiati with

display devices. Meanwhile, valuable datasets are oftelm\aad on tape systems to prepare for potential, while ivelgt
infrequent, reuse.

While scientific data users have managed to get their job dathebasic data movement and management tools, such as
FTP, SCP, GridFTP, several factors and trends intensifpéeel for more powerful distributed storage support andipless
paradigm shifts in data storage and movement models. Hiese is a growing gap in system sizes between data generatio
sites (experimentation facilities and supercomputerd)cmsumption sites (local clusters and office workstajionsthout
efficient distributed storage infrastructures to aggregapacities and bandwidths, the use of Peta-scale andcaleaesm-
puting enabled by cutting-edge supercomputers will bersgvémited by scientists’ data post-processing storagdifies.
Second, the increasing complexity of scientific computimgkflows makes it harder and harder to stay with labor-iritens
and error-prone manual operations. In addition, such mapeations or scripts are often point-to-point processasdo
not easily adapt to changes in computing/storage platfonmisdo they naturally support data sharing or collaboratke-
nally, point-to-point data movement and single-site sieraill not be able to effectively utilize recent technolagvances,
such as P2P storage and data distribution, volunteer cangpand cloud computing.

One may wonder whether existing distributed storage anal sladring solutions, mostly developed for commercial or
entertainment applications, can be applied to scientifopating. Unfortunately, although the storage, processamgl
sharing of scientific data can significantly benefit from maoynponents of existing distributed storage solutionssehe
processes also possess many unique challenges and regpiisehrat have not been addressed by systems in existence:

e Level of System integration: Distributed storage systems for data-intensive scienee e locate a balance point
between tightly coupled systems that resemble parallekfitgems, and loosely coupled systems used in P2P data
sharing. On one hand, the separation between storage cesamd high-level storage structures is highly desirable
to accommodate diverse and ever-changing hardware angaseftomponents. On the other hand, data-intensive
scientific applications, unlike entertainment data shipaind many other commercial applications, adopt a mordyight
coupled computation model, and often demand highly opgohjzerformance.

e Namespace Distributed storage systems need to be able to identifysdtgastored using well-defined names. These
range from self-identifying uniform resource indices (YRisimple file names. These are then needed to be organized
in some form of a flat or a hierarchical namespace. A flat naawsjs easy to implement, but may not scale to large
sizes, whereas a hierarchical namespace is flexible butimarwed.

e Granularity: Typically, media sharing is done at the granularity of enfiles. However, the size of datasets involved
in modern scientific computing, and the streaming approdopizd in typical workflows entail that the scientific data
is handled in small fixed size portions or chunks. The sizenoh&s can vary from a few KBs to several hundreds of
MBs. Consequently, a data transfer architecture desigmegtientific computing must efficiently handle varying size
chunks, as well as issues of maintaining, finding, and ifigng chunks belonging to specific datasets.

e Resource model:While dedicated, high-end resources are universally gea@t supercomputing centers, the dis-
tributed end-to-end scientific computing workflow provideany practical use cases for contributed (or volunteer)
storage, where storage resource owners donate spacesdgregated into large, shared storage capacities. This is
partly due to that scientific data are often considered lessisve compared to commercial data, making storage on
individually owned and managed devices more acceptabsm, Aften resource-constrained, scientists tend to be more
open with distributed storage solutions that have low égonserms of both hardware purchase and system management.

e Performance Vs. Space Utilization:A key design consideration for distributed storage systisnsstrike a balance
between performance and space tradeoffs. What is the gtia¢ sfystem? Is it to use a set of distributed resources to
provide more storage than what is feasible? Or, is it to baisgt of distributed storage resources to provide fastar dat
access performance? Or, can we achieve a balance betwsergtiads?

o Reliability: A distributed storage system needs to be able to store dataefiable fashion. Since such a storage
system can be constructed out of dedicated or commodity coers, the reliability semantics has to be robust enough
to accommodate any underlying fabric. In any case, receulies show that the rate of storage system failures is
high [60, 51, 62] and that ensuring reliability in large4edastallations is complex. Any distributed storage systeill
need to support a combination of standard replication amsbee coding schemes depending on space and performance
tradeoffs.

e Transparency: Transparency is a highly desired feature for data-intensdvence. In many situations, transparency
translates into ease of use, portability, and reusabifigt tan be of more value than performance. In particular,
scientific application developers and users are typicaliyjnain scientists, who hesitate to invest time and effort in
configuring distributed storage services, or to modify gxisapplications. In addition, transparent storage gorhst
allow existing applications and workflows to evolve with neardware and software upgrades, which is worthwhile

compared to the lost optimization opportunities when moweek-level design and implementation details are exposed
to applications and users.

e Deployability: Any practical data storage scheme should provide abstrecthat can be easily integrated with the
application base, and should be minimally intrusive ontexgssoftware to ensure adoption by system administrators.
Ease of deploying, maintaining, and using a particulariseng key to its success as a practical system. For instance,
distributed storage service that uses the standard NF$fa@jcol is more likely to see actual deployment compared
to a service which requires users to link with customizerhliles, or worse make changes to their code base.

e Quality of Service: Quality of service metrics for a distributed storage systange from ensuring that the datasets
are safely stored, to ensuring integrity and correctnes®wievals, to securing the datasets against malicious use
and hosts and to guaranteeing performance. A loosely coupdatributory storage poses fundamental challenges to
ensuring quality of service.

e Bulk Data Optimizations: Distributed storage for data-intensive science has to Bgded with handling massive
data in mind, in terms of dataset size, access granularityoth. In particular, with Peta-scale computing centers be
coming the main stream, there is a growing disparity betveegmulation site and other parts of a scientific computing
workflow in storage capacity and bandwidth.

e Leverage Commodity Components:Finally, an ideal service will utilize commodity off-thdwslf components for
realizing its goals. This s critical, as costis a major abkt in large-scale HPC installations, and relying on spizeid
hardware may make an approach economically non-viableesliod more, there is a wealth of commodity components
at end-user sites, in the data path and at the HPC centeribDtst storage systems need to be able to utilize these in
a concerted fashion.

The end-to-end data path in scientific computing throws opgnerous opportunities to construct novel distributedegte
systems that can be brought to bear on I/O intensive taskbelfollowing case studies, we will highlight several stafe
the-art distributed storage solutions that are built framaet combinations of storage elements available in theterehd
I/O stack. We will further analyze how these systems addtesdata intensive computing challenges.

3 Case Studies in Distributed Storage Systems
3.1 Google File System

The Google File System (GFS) [32] is a distributed file systieweloped by and deployed at Google, specifically designed
to its web data processing and search engine workloads. @#8&jn principles are based on Google’s data access wdrkloa
as well as computing platform characteristics.

As Google periodically crawls the web space, downloads veetients, and index es documents to provide continuous
and scalable service to many concurrent search engine, itsersates many large files and most of its files are seldom
overwritten. Instead, its write workload is heavily madehypappends, where it is common for multiple clients to concur
rently append to a shared file. Meanwhile, overall Googleahasad-intensive workload, with a large number of current
gueries processed simultaneously. Several major GFSrddsigsions reflect these workload requirements. Firsg éle
partitioned into chunks, which are distributed to multiptgver nodes, for better access throughput. Second, tiv sine
is set at 64MB, much larger than block sizes used in traditifite systems, to reduce the metadata size and communica-
tion/management overhead. Third, GFS adopts a relaxedstemsy model that targets Google’s appending-oriented fil
mutations. In addition, the general optimization goal ofS3& made to prioritize high throughput over low latency.

Similarly, GFS is highly customized toward Google’s compgtenvironment, which consists of large collections of
commodity nodes and heavily relies on hardware and softwetendancy to protect against failures. GFS’ architecture
also reflects the same philosophy, where chunk replicati@yspa key role in both fault tolerance and scalable disteitu
data accesses. A GFS cluster is made of one master nodeplmuhiunkserver nodes, and many client nodes. File chunks
are aggressively replicated (with a configurable replicatiegree, which is set at 3 by default). The chunk replicas ar
intelligently placed to improve data availability and tdhamce the network bandwidth utilization. The master nodesages
metadata such as the name spaces, the file-to-chunk mapainththe chunk locations. Google has demonstrated that with
its large chunk size, a single master node is capable of nragmagd serving large GFS clusters made of thousands of nodes
This has inspired the single-master design in other digteibstorage systems such as FreeLoader.

GFS’ data storage model and architecture works hand-ia-kath its application interfaces, such as the well-known
MapReduce model [29]. With MapReduce, more complex opmratcan be partitioned into many Map operations that
takes input data and generate intermediate results, bdtreiform of key-value pairs, which are then sorted by the key
and passed to nodes that perform the result merging with deethsks. Many of Google's data processing tasks can be

expressed as a pipeline that consists of one or more MapResdages. With GFS providing the underlying distributed
chunk access services, MapReduce applications can easfiyrm distributed Map tasks and shuffle data to redisteibut
intermediate results to reduce tasks. Also the chunk ragdic mechanism naturally supports the task replicatiofopmed

by MapReduce for better reliability. Hadoop [34], a popwaen-source MapReduce framework implemented by Apache,
comes with an open-source counterpart of GFS, called HDR8dbIp Distributed File System).

Given Google’s read- and append-intensive 1/0 workloaditmidosely coupled distributed execution environmenss (a
opposed to supercomputers or clusters running parallehljabs), GFS is suitable for certain classes of scientifia da
workloads, such as data centers that provides query, miaimg)visualization services. On the other hand, though GFS i
designed for massive data processing, it is not optimizekii§dly synchronized, write-intensive applications sastparallel
simulations.

3.2 FreeLoader

FreeLoader [70, 71] is a distributed volunteer storage &aork developed at North Carolina State University and Oak
Ridge National Laboratory, which aggregates unused dpsittirage space and I/O bandwidth into a shared cachefscratc
space. It was motivated by the observation that even withthikeeproliferation of high-end systems (high-performance
parallel file systems, storage area clusters, data ceataisarchival systems), there is a lack of end-to-end stosagport
for scientists to accommodate, prepare, or consume datainlécal computing environments. In particular, the tlasle”
in many scientific computing workflows requires data proicgsand visualization at personal computers, where thexe ar
interactive devices as well as more user control on softieaks for viewing and navigating data. While personal coieps
today are equipped with unprecedented processing pov@ranfl storage are more than ever the weakest link in these
systems. Therefore, although recent technologies sucdheastilti-core architecture has brought personal comptiters
parallel processing capability to enable powerful deslkdata processing, the lack of storage space and I/O ratdyg easi
prohibits their effective use for data intensive sciené@eeloader was proposed to enable these personal comfuupers!
not only their idle storage spaces, but also under-utiliZ®@dandwidths, to create a shared space for scientists th oo
their data.

With FreeLoader, workstation owners within a local areavoek contribute unused disk space, similar to how volunteer
computing participants contribute idle CPU cycles usiranfeworks such as Condor [42] and Entropia [19]. To utilize
today’s high-speed local area networks for better datasacdes, FreeLoader stripes datasets onto multiple ipatiicg
nodes (calledbenefactors The aggregate storage space managed by FreeLoademidadtas a cache or scratch space,
rather than a general purpose file system or archival systatoffer persistent, long-term storage of data. Insteddrgets
creating a space much larger than a typical workstationderaitached secondary storage, to enable scientists teg#,0
analyze, and visualize their “hot” datasets generated bg-iddensive experiments or applications. As interese$adn
these datasets, they will be replaced by new datasets thatienently of interest to the local FreeLoader users. Initihd
such a distributed storage framework would also facilitzdéa sharing, as colleagues in the same physical orgamzati
tend to collaborate and access common datasets [37, 5GheFfwvhen scientists consume their data, they often work on
certain datasets for an extended period of time (typicadlysdor weeks). Considering that data migration from ar¢hiva
systems is limited by transfer rates that are significamtyelr than local I/O or LAN throughput [40, 39, 72], as a st@rag
cache FreelLoader exploits data locality to reduce reduratah expensive remote 1/0O or data migration operations. In a
subsequent project [44], the FreeLoader authors also ieglfurther in this direction by using a local FreeLoadeaspto
only cacheprefixesof remotely stored datasets to hide the latency in remoi® aetess with a reduced space cost. Such
prefix caching is coupled witbollective downloadingo achieve fast data transfer that makes remote data asdes$dike
speedy local FreeLoader space operations.

The FreeLoader storage system contends that such a stocatgt ispractical and cost-effective, based on severalrobse
vations. First, collectively a large amount of disk spageais under-utilized on personal computers within academi
industry organizations. Studies have shown that on aveeddeast half of the disk space on desktop workstationdés id
and the fraction of idle space increases as the disks beangeri[12, 30]. In addition, most workstations are online fo
the vast majority of the time [22]. Second, disks are chedpy@nd personal computers are more frequently updated and
upgraded compared to higher-end systems. At the same tffrtheeshelf shared storage solutions such as disk arnags a
SAN (Storage Area Network) systems are much more expensd/eféen out of reach for scientists. Therefore, frameworks
like FreeLoader allows people to pool distributed storageiaks in a reasonably sized organization into a consitierab
large, yet affordable, shared space. Third, scientific datapatterns have unique characteristics that allow foplgied
design, enabling FreeLoader as a user-level, light-wesgstem. For example, scientific datasets processed atistsén
local environments are often immutable and are safely eech(typically at the mass storage centers co-located witles
computers or web data repositories [49, 61, 67].). Alsoaskts are large and often accessed sequentially. Thesecteat

provide FreelLoader with opportunities to focus more on gliog a transparent shared storage space and efficientinga
and writing bulk data, rather than traditional distributtdrage issues such as data consistency, concurrencylcamd
reliability.

The FreeLoader architecture comprises contributing lzetef nodes and a management layer that provides services su
as data integrity, high performance, load balancing, anghthcontrol. The FreeLoader prototype demonstratedrteadadli-
tion to the space aggregation benefit, it was able to deligdren data access rates than traditional storage fasihtiailable
in scientists’ local computing environments. This is maigttributed to novel data striping techniques that aggeegavork-
station’s network communication bandwidth and local I/@dbaidth. The authors also show that security features ssch a
data encryptions and integrity checks can be easily addiitkas for interested clients.

Compared to more general-purpose distributed storageragdbuilt on top of contributed devices, such as Farsite [12]
and two projects to be discussed later in this chapter (Kfkfaand TSS [68], FreeLoader is a more specialized system
specifically targeting local scientific data processingergfiore, it does not support full file system functionalégd only
implements a very small set of file 1/0 interfaces to enablétdtyle read/write operations in addition to whole-fileenp
ations. On the other hand, it is a very light-weight softweaehe/scratch space tailored for handling transient useslio
scientific data. In addition, the performance impact on /e workload of donor machines is small and can be effelgtiv
controlled. Further, we show that Finally, we demonstrate kegacy applications can use the FreeLoader API to state an
retrieve datasets. Also, FreeLoader is designed with thakikty to dynamically control its resource use to yieldhtative
workloads on storage contributors. This is particularlpartant as FreeLoader is intended for data-intensive cdingpu
in desktop environments, where owners of contributed lzentefs also conduct their day-to-day activities. The oagi
FreeLoader development involved performance impact sftidlyand a systematic performance impact control mechanism
was proposed in a related study [66].

3.3 stdchk

stdchk, a checkpoint storage system, extends the concépeef.oader aggregate storage checkpointing operations in
HPC applications. Much like how stdin and stdout input/atitfystems are ubiquitously available to applications;tstd
argues that checkpointing is an I/O intensive operatiaqyireng a special ‘data path’. It ensures that this data jsdtle made
available to HPC applications as a low-cost checkpoinirtiped storage system. stdchk is optimized for the workl degh-
speed writes of incremental versions of the same file. stdahkbe used within a desktop grid, where the loosely condecte
workstation storage is aggregated; it can be used withimstenl where node-local storage can be aggregated; and finall
it can also be used to aggregate memory from processor gosegpercomputers. To this end, stdchk introduces several
optimizations to render itself ‘checkpoint-friendly’ tofdC applications:

e High write throughput.stdchk exploits the I/O parallelism that exists inhereirlyhe aggregated storage to provide
a suite of write-optimized protocols that enable checkfioinat throughputs higher than what is feasible in current
settings.

e Support for incremental versioningtdchk minimizes the size of the data stored using a novatisalto incremen-
tal checkpointing that exploits the commonality betweetcssgsive checkpoint images. Since checkpoint images are
chunked and striped in stdchk, it can afford to perform tHefdng optimizations. First is a fixed-size compare-by-
hash (FsCH) technique, which divides a file into equal-sttathks, hashes them and uses the hashes to detect similar
chunks. The main weakness of this approach is that it is rsdteet to file insertions and deletions. An insertion of
only one byte at the beginning of a file prevents this techaifgjom detecting any similarity. Second is content-based
compare-by-hash (CbCH). Instead of dividing the file intoaesized blocks, CbCH detects block boundaries based
on content. Compared to FSCH, this approach is more comguidly intensive. stdchk experiments have shown
that system-level checkpointing can benefit significantiyrf incremental checkpointing compared to application or
library-level checkpointing. A desired side-effect ofiamental checkpointing is that it enables application$xk-
point at a finer granularity.

e Tunable data availability and durabilitySince stdchk aggregates storage contributions from gahebdes, standard
replication techniques are used to ensure data availabiitl durability. Further, applications can decide thellefe
data availability/durability they require. The level ofltendancy needs to be balanced against overall space alitgilab
as that is a finite amount and dictates the serviceabilith@btorage system. stdchk choose replication againstrerasu
coding for improving the availability of datasets as erastoding is a compute intensive operations and applications
are eager to return to perform useful computation rather $panding more time checkpointing. Consequently, stdchk
conducts the replication in the background.

e Tunable write semanticsAdditionally, stdchk gives applications the ability to ds® between a write semantic that
is pessimistic (the system call returns only after the @eldievel of replication is achieved and, consequently, stpw
or optimistic (return immediately after data has been emitsafely once, while replication occurs in the background)
This further gives applications control over the write tingbput vs. data durability tradeoff.

e Automatic pruning of checkpoint imagestdchk offers efficient space management and automatiéngah check-
point images. These data management strategies lay thédtan for efficient handling of transient data.

e Easy integration with applicationstdchk provides a traditional file system API, using the FUBile system in user
space) Linux kernel module, for easy integration with agailons. Since the entire checkpoint storage is mounted as
a file system, applications can save snapshot data seaynl€h& tranparency comes with a small performance cost
in the write operations. However, the flexibility offeredtaeighs this cost.

In extreme-scale systems, where there is no node-locas,ditéichk can be employed by aggregating memory contri-
butions from the user’s allocated processor cores. It isssomin HPC job submission systems for jobs to oversubscribe
for processors to prepare for failure. For example, dependn the failure rate of the machine, a particular job migit a
for 12,000 cores instead of the 10,000 cores that it actmalgds. The remaining cores are used for failing over presess
stdchk can create an aggregated memory device built outabf gools. This approach has the advantage that it uses the
application’s own over subscribed processor allocationweéler, in such an instantiation, the data striped on toh&tdk
drained to a central, stable parallel file system to make rtmradditional checkpoint data. Thus, stdchk can be used to
improve the 1/0 bandwidth in data intensive applications.

3.4 BADFS

BAD-FS [15] is a distributed file system for handling largk) intensive batch workloads on remote computing clusters
distributed across the wide area. BAD-FS facilitates stggif data on distributed storage resources, by allowingitiees to
explicitly specify the data needs of their applications #reh factoring the user specifications in data schedulicgsms.
BAD-FS differs from traditional distributed file systemsiis approach to control data placement and movement. ltsgo0
decisions regarding consistency, caching and replicabommonly hidden inside a file system, to the external scleedu
Using 1/0 scoping, BAD-FS reduces traffic over the wide aretmork. Through capacity-aware scheduling, BAD-FS avoids
mismatch between jobs and resources, consequently pieyenerflowing storage and thrashing caches. The interface
exposed by BAD-FS can be leveraged to allow applicationsctaig placement of data.

BAD-FS can serve as a enabler for supporting large-scatestiaging and offloading. For instance, a user can specify the
set of input dataset, locations where the dataset is store@hde replicated, and locations for storing the outplasktt The
scheduler can then stage the data from the specified losdisfore a job is started, and move the output data to the butpu
locations after completion of the job. Additionally, altigh not done in BAD-FS, such interfaces can be extended with a
automatic monitoring system to allow for dynamic placenmdata even in the absence of explicit information from the
application.

3.5 dCache

dCache [8] is a distributed storage system to store largasdt that are disseminated from experiments such as the
CERN's LHC. It uses a set of commodity nodes to store largasdds and provides access to clients using standard access
protocols. Datasets are stored in their entirety on a nodeny even be replicated to protect against failure of themodity
node. dCache can be tied to a tertiary storage system and cas dlata back and forth using LRU schemes. It offers a
uniform namespace within a single file system tree for dateedtacross these storage elements.

Data is usually placed onto pools using pool attraction netleat stores data on nodes based on properties such as
reliability. Certain pools can be dedicated for interacsiovith tertiary storage systems. Pools can also commurtiedtveen
each other to shuffle datasets in order to avoid hot spotdéedaesses. Such an approach is used to load balance theedCac
storage system.

dCache serves as an excellent use case for storing largerdatanmodity systems and can help immensely on end-user
analysis. Many site have numerous commaodity system thategooled together to offer a collective storage. Howeber, t
I/0O throughput offered is limited to the bandwidth capale$ of the individual storage nodes and dCache does nodiéxpl
parallelism among the nodes to perform striping.

dCache offers support of grid transfers using the gsiftp fdéchanims. It also supports the Storage Resource Manager
(SRM) [64] protocol. These features make dCache a good datedfor data intensive science and extreme-scale data
movement.

There are several similarities with FreeLoader and GFS\mthese systems aggregate storage. Contrary to dCache, thes
system chunk the datasets and stripe them for better thpatigReplication is performed at the chunk-level and nohat t

dataset-level as in dCache. While chunk-level operatidfies more flexibility, they also entail more management dnad.
dCache is fundamentally optimized for providing a largeage space for bulk datasets and accomplishes its goatglgg

3.6 IBP

The Internet Backplane Protocol (IBP) [52] is a middlewarerhanaging distributed storage depots. The basic premise
behind IBP is to make use of storage in the network fabric likeshow packets are buffered at intermediate routers ein th
way from source to destination in the internet, IBP byteysrare forwarded from one storage depot to another. Therefor
IBP offers a staged approach to data movement, providinficapipn managed communication buffers in the network with
a temporal validity. This setup provides a logistical netiitog infrastructure supporting the scheduling and optation of
data movement for end-to-end applications.

IBP supports the following key functionality:

e Ability to allocate byte arrays for storing data. These @dittons can be temporal or permanent; the client can specify
whether the allocation is volatile or stable to mean whetheiserver can revoke the allocatio or not.

e Moving data from senders to byte arrays

e Moving data from byte arrays to receivers

These features are supported using several proceduregtzsisd on TCP/IP, that help expose a storage to the IBPtinfcas
ture. Distributed storage on a wide-area scale is usuallyaged and operated using standard file systems with a uniform
namespace and strict semantics. Instead, IBP byte arraysecaiewed as files that reside in the network IBP offers appli
cations ways to read and write byte arrays on other dep@ehly creating a shared network resource for storage. B by
arrays are append only. IBP offers exNodes to aggregat@getaesource across depots to present an aggregate fileeservi
over the network. This allows users to interact with IBP @sfructure at a higher-level and not using lower-levelisess
such as storing data in the network. This is similar to usetsuorrying about disk blocks in file systems

The IBP approach can be used to stage data closer where édsaer to allow applications to perform their own routing,
steering the placement of data in a wide-area setting. @engie staging in and out of job data between end-users aGd HP
centers. IBP storage depots can be used as a means to datad¢nicbugh the intermediate depots, while also using ttem a
fail-over points in case of resouce failure. Storage depaisbe used to move data close to either the end-user or an HPC
center. Thus IBP’s ability to exploit locality to offer a gied delivery can be used as an alternative to point-to-p@insfers
in data intensive computing.

IBP’s ability to stage data closer to end-user is also simidaFreelLoader’s client-side caching. However, IBP is not
designed as a locality-aware cache in that users need tidymssign temporal validity to files and retention is teised
on frequent accesses.

IBP’s infrastructure can also be used for distributed cpeakting. As mentioned earlier, checkpoint images areestor
on disk within a LAN. However, IBP can be used to store cheakgdn a distributed environment, providing more fault
tolerance for snapshot data. This allows end-user apjgitato control the locations and level of redundancy forckipeint
data. Unlike stdchk, IBP is not specifically geared for chpssiting, but it serves as a nice storage place for checkpoin
images.

3.7 Tactical Storage Systems

One key challenge in aggregating distributed (and ofteerbgeneous) storage hardware for data-intensive sceentifi
applications is to choose a balanced level for 1/0O intedad&hile systems with a tightly coupled storage hierarctor pr
vides opportunities to deliver highly optimized perforrearand low overhead, such systems usually lack the potaoili
flexibility to work with diverse applications/hardware,toradapt to changes.

TSS (Tactical Storage System) [68] was proposed with thé gfoanabling flexible upper-level storage system estab-
lishment, by separating storage abstractions from phlystosage resources. The TSS authors observed that shaed fil
systems in cluster environments often become major lignifactors in the overall system productivity, in terms ofippl
constraints, capacity limits, and bandwidth bottlenechsTSS allows users to build a variety of storage structurds (fi
systems, databases, or caches), with desired featur&db{disd and/or shared), on top of storage resources totéd by
workstation or cluster owners. TSS was deployed at the Wsitlyeof Notre Dame to support two scientific applicationshwi
different storage needs and data use patterns.

Like FreeLoader, TSS operates at user level. Its authorseatwt this allows great flexibility in creating differengh-
level storage abstractions, while the performance disadga caused by higher latency and overhead is reasonahlly sm
Its basic storage unit is a file server that exports a Unig-Ifl0 interface, running on the machine participating irrage
aggregation.

However, there are several major distinctions between T#iSFaeelLoader. First, TSS is a more loosely coupled and
general system compared with FreeLoader. It is intendebitding diverse storage abstractions on top of a sharexlires
layer with well-known and consistent interfaces. Freelssadn the other hand, employs an architecture closer to tlog @

File System, with a single node acting as central managenaaid-data server and participating machines serving chunk
of data. Second, TSS aims at flexibility and versatilityréfiere its design focus was placed on resource virtuatinaind
abstraction construction (with mechanisms sucldeptors which connect various abstractions to the resource layer)
contrast, FreeLoader is intended to be a shared cachedtinil fast data processing and consumption on desktopstark
tions, whose design is focused on performance and sc#jaistiues and adopts throughput optimization techniquels su
as striping. Finally, the TSS prototype has the capabilitipuolding a shared file system with Unix-like interfaces,ilgh
FreeLoader supports a rather small set of Unix file 1/O openat

3.8 P2P Techniques in Distributed Storage

Peer-to-peer (p2p) overlay networks were initially popizked by file sharing systems such as Napster [48], Gnut&llh [
and Kazaa [63]. The main attraction of these systems atritewias their ability to manage a large number of users without
any centralized control, and user anonymity that guaranfie®dom from fears of censorship [24]. However, these-first
generation systems used centralized servers, propriptatgcols, or controlled flooding for communication amoregrs
in the overlay and for searching data. This led to drawbagkk as bandwidth wastage, lack of resiliency, and deperdenc
on external entities such @é®otservers. However, studies of p2p traffic on these networéw/et their promise as storage
substrates: the primary application of these systems veastaring [41].

The second generation p2p networks imposed some form aftsteuon the topology of the overlay and formalized
the overlay building and maintenance protocols. Exampiesich structured p2p overlays include CAN [54], Chord [65],
Pastry [56], and Tapestry [75], and have demonstrated tiieydab serve as a robust, fault-tolerant, and scalablestalte
for a variety of applications [57, 28, 21, 76, 74, 36, 53, 18].

Structured p2p overlay networks essentially implemedis&ributed hash tabléDHT) abstraction. Each node in a struc-
tured p2p network has a unique node identifreodel d) and each data item stored in the network has a unique key. The
nodel ds and keys live in the same name space, and each key is mappedigue node in the network. Thus DHTs allow
data to be inserted without a-priori knowledge of where It b stored, and requests for data to be routed without reqgui
any knowledge of where the corresponding data items aredsttatying the foundation for developing p2p storage system

Scalable distributed [35] or serverless [14, 69] file systgmmovide some p2p aspects. There are also several wide-area
file system projects such as lvy [47], Farsite [13], and Paada8], which also provide reliability.

The basic data sharing is extended by providing stronggtersie and reliability in p2p distributed storage projesish
as Pond [55] which is a prototype of Oceanstore [38], CFS, [@8) PAST [57].

PAST [57] is a large-scale, Internet-based, storage utilityjcwhuses the p2p network provided by Pastry [56] as a
communication substrate. PAST provides scalability, ragailability, persistence and security. Any online maehaan
act as a PAST node by installing the PAST software, and jgitine PAST overlay network. A collection of PAST nodes
forms a distributed storage facility, and store a file asofefl. First, a unique identifier for the file is created by perfimg
a universal hashing function such as SHA-1 [11] on the file @maiext, this unique identifier is used as a key to route a
message to a destination node in the underlying Pastry nletwihe destination node serves as the storage point for the
file. Similarly, to locate a file, the unique identifier is cteg from the file name, and the node on which the file is stored
is determined through Pastry routing. PAST utilizes theeigzat distribution and network locality properties inbet in
Pastry. It also automatically negotiates node failuresrasde additions. PAST employs replication for fault tolex@nand
achieves load-balancing among the participating nodes.wdtk builds on the functions provided by PAST to store and
retrieve portions of file, and adapts the core PAST functtortsandle large files.

CFS[28] provides a scalable, wide-area storage infrastredir content distribution. CFS exports a file system (hier-
archical organization of files) interface to clients. lttdlsutes a file over many servers by chopping every file intalsm
(8 KB) blocks thereby solving the problem of load balanciogthe storage and the retrieval of popular big files. This als
results in higher download throughput for big files, which te retrieved in parallel from many nodes. The component tha
stores data is referred to as a publisher. A publisher iflesth data block by a hash of its contents, and also makesasiis h
value known for others. Similarly, a client uses the ideatifiash of a block and Chord [65] routing to locate and regrtbe
block. To ensure authenticity of retrieved data, each blsaigned using the publisher’'s well known public-key. Alsm
maintain data integrity, blocks can only be updated by theblishers. Finally, CFS deals with fault tolerance by iegilng
each data block ok successors, where one successor is made in charge of ratjiegmeew replicas when existing ones fail.

These systems share the goal of using peer nodes to estbplisticipant-based contributory storage facility, treat be
used to support decentralized data delivery and efficiagirsg in the context of data intensive computing.

10

Finally, systems such as Kosha [18] and TFS [23] providesfrarent access to p2p-storage. In the following, we discuss
Kosha in more detail.

3.8.1 Kosha

Kosha [18] provides a Network File System interface [59, 04 p2p storage system, and allows users and applications
to transparently access their distributed files using aairirectory hierarchy.

The design of Kosha is aimed at providing storage for indigicharticipating sites consisting of multiple nodes, e.g.
clusters connected to the grid. It provides an economiahfaumt-tolerant alternative to the dedicated storageiwihsingle
administrative domain. Kosha instances can provide swsbé intermediate storage locations where data can bexlsioa
wider end-user data-delivery scheme.

Kosha aims to utilize the cheap storage that is availablargeted environments to create a distributed file systedhtan
provide features of location transparency, mobility trEarency, load balancing, and high availability throughr@plication
and transparent fault handling. These features allow Kasinan on components that can fail often. For deployability a
transparency, Kosha retains the widely used NFS semasticat users and applications can access the distribuged fil
system without any changes to their applications.

Kosha organizes the participating nodes into a structubgdoperlay, and uses NFS facilities to make the files avaalabl
across peers. It ensures that the location of the files rentiginsparent to the user. Unique to the design of Kosha s tha
instead of distributing individual files over the distribdtstorage provided by the nodes in the p2p overlay, it ik at
the level of directories, i.e., files in the same directory lay default stored in the same node as that directory. Kdsba a
aim to leveraging unused storage space on resources deailacademic or corporate settings, where a lot of diskessc
wasted on desktop machines.

In Kosha, the participating nodes are assumed to run NF&serso that their contributed disk space can be accessed
via NFS. It is assumed that only the system administratorflibaccess to these nodes, and the users cannot modify the
system arbitrarily. Various file operations performed aedied as follows. First, Kosha determines the node on whfida
is stored by performing a DHT mapping on the file name. SecthedNFS Remote Procedure Calls (RPC) are redirected
to appropriate remote nodes. Third, the receiving nodeopmis the operation and returns the results to Kosha, whi th
records the information needed for future accesses. gjr&lisha returns control to the client. Hence, the clientaers
unaware of the underlying RPC forwarding, and the whole aiji@n is transparent, except for a delay caused by the lookup
for the appropriate storage node.

By blending the strengths of NFS with those of p2p overlayssh& aggregates unused disk space on many computers
within an organizationinto a single, shared file system|eumaintaining normal NFS semantics. In addition, Koshaiges
location transparency, mobility transparency, load baltagn and high availability through replication and traagnt fault
handling. Thus, Kosha effectively implements a “Condo3][#for unused disk storage.

3.8.2 Intermediate Storage Overlays

P2P systems discussed so far utilize loosely connectednasin local or wide area settings to create distributeichge
systems. Next, we discuss how a number of such distributedgst sites can facilitate decentralized data deliveagisg
and offloading of large data from the perspective of datansite alaysis within HPC centers.

An issue in using distributed resources is to ensure that idétgrity and privacy is preserved during the decentdliz
transfer. Thus, users often only rely on trusted sites, whie determined using out-of-band agreements. An exarhplesh
collaboration can be TeraGrid [10] sites. However, redearcdecentralized staging [45] and offloading [46] has shihah
even when possible participating sites are known a-ptileiy dynamic availability and policies entail a discoverpcess
for determining the set of sites that can be used for a péatittansfer. Given the scale, dynamic, and distributedneabf
intermediate sites, p2p overlays can play a vital role iarimediate site discovery.

P2P Site DiscoveryThe process of selecting intermediate sitd%'g) from among the participating sites, which are inter-
ested in the data transfer, proceeds as follows.

A p2p overlay, e.g., Pastry [56], is used to arrangedhis. The overlay provides reliable communication with other
participants in the network, even when sites leave or jondysstem. The participating sites use the overlay to acdeerti
their availability to other nodes in the overlay using ramdoroadcast [46]. Nodes that receive these messages bcdl o
information about available nodes for offload. A given node ase its own policies and information about a remote node’s
capacity to make a decision regarding whether to use theteenaoale for the offload. For instance, to discover interntedia
sites, a user siteN;) sends out a number of discovery messages on the p2p netvithrkamdom destination addresses.
By virtue of the DHT abstraction provided by p2p routing, thessages are received at soMgs. On receiving such a
discovery message, avj; replies with its IP address. Thu¥, discoverghe V;. In case the sharing policies of the user site

11

prohibit it from interacting withN, the site can simply ignore the discovery messages fiamFinally, to accommodate
dynamic preferences @¥f;’s, N, discards information about discoveradd's after a specified period of time and starts a fresh
discovery process.

Data-Transfer Paths A decentralized data transfer scheme for HPC centers tsatrestimely data delivery and offloading
is achieved using a combination of strategies both at theecas well as the end-user to orchestrate the transfershigo t
end, the discovered intermediate sité%’¢) provide multiple data flow paths between the center aedetind-user, which
lead to better orthogonal bandwidth utilization, fastériesal speeds, as well as fault-tolerance in the face afriai

The staging/offloading process works as follows. Let us idemgiata offloading. Once the job execution completes, the
data-offloading process is initiated. First, the centerosles a number of nodes from the setgfs ordered by available
bandwidth. The exact number of nodes used for this purp@sethie fan-out, is chosen to achieve maximum (pre-spdtifie
out-bound center bandwidth utilization, or to meet preslgwagreed-upon offload deadlines. These chd3gs serve as
the Level-1 intermediate nodes. Note that the selecteatdris not static, and can vary depending on the transferdspee
achieved. Second, the result-data is split into chunks anallpl transfer of the chunks to Level-1 nodes is initiat8thce
the Level-1 nodes support better transfer speeds than #resiig, the offload time is expected to be much smaller than a
direct transfer to the user site. Third, Level-1 intermeali@odes may also further transfer data to the Level-2 irgdiate
nodes (once again chosen frdm's), and so on. Consequently, data flows towards the usettisgagh it is not pushed to
the user site. Finally, the user site can asynchronoudligvetthe data from the Level-N nodes. Decoupling the uger si
from the data push path allows the center to offload the dgtaalk (pre-specified) out-bound bandwidth without worrying
about the availability (and connection speed) of the user wsihile enabling the user site to pull (retrieve) data frbp's as
necessary.

Similarly, the process of data staging involves the follogvsteps. Once the data staging is initiated, the user Sitesels
a number of nodes from the set bf’s (fan-out) ordered by available bandwidth. The cardigadf the fan-out is chosen
to stage-in all the necessary data before the predictedgobtine. These choseb;’s serve as the Leve$, intermediate
nodes. Once again, the selected fan-out is not static, andacg depending on the actual transfer speeds and the inmgend
deadline. The staging service monitors the changing batttwiperiodically (using NWS [73]) to determine if a chosen
fan-out needs to be increased. Next, the input data is sphitchunks and parallel transfer of the chunks to Led)ehodes
is initiated. The transfer may also involve further levelinbermediate nodes (up to Levély). Alternatively, depending on
the availability of intermediate nodes, the user site can atage the data to LevSly nodes much earlier than the deadline.

As the job startup deadline approaches, the close proxiofitlye LevelsSy nodes to the center allows them to quickly
move the input data to the center’s scratch space. Alsod#sggn allows the Leve$y nodes to stage the data at peak
(pre-specified) bandwidth at the most appropriate timeauthvorrying about the availability (and connection spesdhe
submission site.

The use of intermediate nodes in the decentralized dataftnagystems provide multiple data-flow paths between the
center and the user site, leading to several alternatieraptor data delivery. For instance, data may be replicatedss
differentD;’s during the transfer from one level to the other. This wilbe for pulling data from a number of locations when
needed, thus providing fault tolerance against node failas well as better utilization of the available orthogdozeddwidth.
Finally, the schedule can also be used to simultaneousiyedelata to multiple interested sites in the network.

The use of intermediate nodes is similar to that of IBP. IBersfa data distribution infrastructure with a set of syyatally
placed resources (storage deopts) to move data, and impierhat is referred to as logistical netwroking. The intedmate
storage overlay also exploits the presence of pre-instalierage nodes for data delivery as and when they are aleailab
However, it differs significantly in its attempt to combineth a staged as well as a decentralized data delivery. Thietiod
of user-specified nodes also allows the system to optimzeléta delivery on a per user basis, which is not possible with
IBP. Further, it strives to meet a deadline in delivering &l &s in timely offloading from the HPC center.

References

[1] UC/ANL Teragrid Guide.http://www.uc.teragrid.org/tg-docs/user-guide.html#disk, 2004.
[2] Earth system grid. http://www.earthsystemgrid.org0@.
[3] NCCS.GOV File Systemshttp://info.nccs.gov/computing-resources/jaguar/file-systems, 2007.
[4] Laser Interferometer Gravitational-Wave Observatyp://www.ligo.caltech.edu/, 2008.
[5] National Institute of Computational Sciencdgtp://www.nics.tennessee.edu/computing-resources/kraken, 2008.
[6] Spallation Neutron Sourcéattp://www.sns.gov/, 2008.
[7] Sun constellation linux clustehttp://www.tacc.utexas.edu/resources/hpcsystems/#constellation, 2008.
[8] dCache.ORGhttp://www.dcache.org/, 2009.
[9] National Center for Computational Sciencéstp://www.nccs.gov/, 2009.
[10] Nsfteragrid.http://www.teragrid.org, 2009.

12

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]

[26]
[27]
(28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]

[43]

F. 180-1. Secure Hash Standard. Technical Report &atldn 180-1, Federal Information Processing Standar@SKINIST, US
Department of Commerce, Washington D.C., Apr. 1995.

A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. CermaRduceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhdf&RSITE:
Federated, available, and reliable storage for an incaeiglgusted environment. IRroceedings of the 5th Symposium on Operating
Systems Design and Implementafia@02.

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaik&rR. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.tévidtofer.
FARSITE: Federated, Available, and Reliable Storage fdnaompletely Trusted Environment. Rroc. 5th USENIX OSDpages
1-14, Boston, MA, Dec. 2002.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterstn S. Roselli, and R. Y. Wang. Serverless network file systehCM
Transactions on Computer Systerh4(1):41-79, 1996.

J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. ArpacisBeau, and M. Livny. Explicit control in a batch-aware dlstted file
system. InProc. 1st USENIX NSDpages 365—-378, San Francisco, CA, Mar. 2004.

J. Bester, |. Foster, C. Kesselman, J. Tedesco, ande&sk&u GASS: A data movement and access service for wide aneputing
systems. IProceedings of the Sixth Workshop on I/O in Parallel and ibsted System<.999.

A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha: A peepter enhancement for the network file system.Ptoceedings of
Supercomputing2004.

A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha: éepto-peer enhancement for the network file systéoarnal of Grid
Computing: Special issue on Global and Peer-to-Peer Comgud(3):323-341, 2006.

B. Calder, A. Chien, J. Wang, and D. Yang. The Entropi&ual machine for desktop grids. Froceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environiise2005.

B. CallaghanNFS lllustrated Addison-Wesley Longman, Inc., Essex, UK, 2000.

M. Castro, P. Druschel, A.-M. Kermarrec, and A. RowatroScribe: A large-scale and decentralised applicativatieulticast
infrastructure IEEE Journal on Selected Areas in Communications (JSA@q{8kissue on Network Support for Multicast Commu-
nications) 20(8):100-110, 2002.

A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropdachitecture and performance of an enterprise desktopsystem.Journal

of Parallel and Distributed Computin@g3(5), 2003.

J. Cipar, M. D. Corner, and E. D. Berger. TFS: A transpafie system for contributory storage. Rroc. 5th USENIX FASTpages
215-229, San Jose, CA, Feb. 2007.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. FreereDistributed Anonymous Information Storage and RetrieSgstem,
1999.http://freenetproject.org/freenet. pdf.

J. W. Cobb, A. Geist, J. A. Kohl, S. D. Miller, P. F. Petens G. G. Pike, M. A. Reuter, T. Swain, S. S. Vazhkudai, and N. N
Vijayakumar. The neutron science teragrid gateway: a tetagience gateway to support the spallation neutron solResearch
articles.Concurrency and Computation : Practice and Experient®(6):809—-826, 2007.

Conseil Européen pour la Recherche Nucléaire (CERMC— the large hadron collider, July 2007.
http://1hc.web.cern.ch/l hc/.

R. Coyne and R. Watson. The parallel i/o architecturtéhefhigh-performance storage system (hpss)Prioceedings of the IEEE
MSS Symposium 995.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |.i&o Wide-area cooperative storage with CFS.Phoc. SOSPpages
202-215, Banff, Alberta, Canada, Oct. 2001.

J. Dean and S. Ghemawat. Mapreduce: Simplified dataepsing on large clusters. Proceedings of the Sixth Symposium on
Operating System Design and Implementation (OSD)'2ap4.

J. Douceur and W. Bolosky. A large-scale study of filsteyn contents. IRProceedings of SIGMETRIC$999.

J. Frankel and T. Pepper. The Gnutella protocol spextifin v0.4, 2003.

http://ww9.|inew re.conf devel oper/ gnutel | aprotocol 0. 4. pdf.

S. Ghemawat, H. Gobioff, and S. Leung. The Google filgesys InProceedings of the 19th Symposium on Operating Systems
Principles 2003.

M. Gleicher. HSI: Hierarchical storage interface foP8IS. http://www.hpss-collaboration.org/hpss/HSI/.

Hadoop. http://hadoop.apache.org/core/.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, Matganarayanan, R. N. Sidebotham, and M. J. West. Scale and
performance in a distributed file syste®CM Transactions on Computer Systeg(d):51-81, 1988.

Y. C. Hu, S. M. Das, and H. Pucha. Exploiting the Synergiween Peer-to-Peer and Mobile Ad Hoc NetworksPtac. HotOS X
May 2003.

A. lamnitchi, M. Ripeanu, and I. Foster. Small-worlcsfisharing communities. limfocom 2004.

J. Kubiatowicz et al. Oceanstore: An architecture flmbgl-scale persistent store. Broc. ASPLOSpages 190-201, Cambridge,
MA, Nov. 2000.

J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett. RFSidifnt and flexible remote file access for MPI-10.Rnoceedings of the
IEEE International Conference on Cluster Computigg§04.

J. Lee, X. Ma, M. Winslett, and S. Yu. Active bufferingusl compressed migration: An integrated solution to pdrsiieulations’
data transport needs. Rroceedings of the 16th ACM International Conference ore®gmputing 2002.

N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. ShaviteAile swapping networks cacheable? Characterizing p#ctrén Proc.
7th International Workshop on Web Content Caching and istion (WCW?7)Boulder, CO, August 2002.

M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter oflelworkstations. IfProceedings of the 8th International Conference on
Distributed Computing Systenmko88.

M. J. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A mter of idle workstations. IfProc. ICDCS pages 104-111, San Jose,

13

[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
e
[64]
[65]
[66]

[67]
[68]

[69]
[70]
[71]
[72]
[73]
[74]
[75]

[76]

CA, June 1988.

X. Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang, and SStott. Coupling prefix caching and collective downloadsréwnote data
access. IiProceedings of the ACM International Conference on Supepeging 2006.

H. Monti, A. R. Butt, and S. S. Vazhkudai. Just-in-tintaging of large input data for supercomputing jobsPhoc. ACM Petascale
Data Storage Worksho@\ustin, TX, Nov. 2008.

H. Monti, A. R. Butt, and S. S. Vazhkudai. Timely offloadi of result-data in hpc centers. Rroc. 22nd ACM International
Conference on Supercomputing (ICS’08ps, Greece, Jun. 2008.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. tv& read/write peer-to-peer file system. Pnoc. 5th USENIX OSDbpages
31-34, Boston, MA, Dec. 2002.

Napster. http://www.napster.com/.

National center for biotechnology information. hitpiww.ncbi.nim.nih.gov/.

E. J. Otoo, D. Rotem, and A. Romosan. Optimal file-buradlehing algorithms for data-grids. Rroceedings of Supercomputing
2004.

E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failurentle in a large disk drive population. FProc. USENIX FASTUSENIX
Association, 2007.

J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and Rolki. The Internet Backplane Protocol: Storage in the netwIn
Proceedings of the Network Storage SymposiL®89.

H. Pucha, S. M. Das, and Y. C. Hu. Imposing route reuseabifa ad hoc network routing protocols using structured-pegeer
overlay routing.lEEE Transactions on Parallel and Distributed Systefig12):1452-1467, 2006.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and SeiSdr. A Scalable Content-Addressable NetworkPiac. SIGCOMM
San Diego, CA, Aug. 2001.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhab) atubiatowicz. Pond: The Oceanstore prototypeProc. 2nd USENIX
FAST, pages 1-14, San Francisco, CA, Dec. 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distat object location and routing for large-scale peergersystems. IRroc.
IFIP/ACM Middleware pages 329-350, Heidelberg, Germany, Nov. 2001.

A. Rowstron and P. Druschel. Storage management artdrgam PAST, a large-scale, persistent peer-to-peer gtoudility. In
Proc. SOSPpages 188-201, Chateau Lake Louise, Banff, Canada, Git. 20

Y. Saito, C. Karamanolis, M. Karlsson, and M. MahalingaTaming aggressive replication in the Pangaea wide-deesytem. In
Proc. 5th USENIX OSDpages 15-30, Boston, MA, Dec. 2002.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and BarLyDesign and implementation of the Sun network file systenfroc.
Summer USENIpages 119-130, Portland, OR, June 1985.

B. Schroeder and G. A. Gibson. Disk failures in the reaild: what does an mttf of 1,000,000 hours mean to youRPrbt. USENIX
FAST, 2007.

Sloan digital sky survey. http://www.sdss.org, 2005.

S. Shah and J. Elerath. Reliability analysis of diskelfailure mechanismfRAMS 2005.

Sharman Networks. Kazaa Media Desktop, 2004t p: / / ww. kazaa. coni i ndex. ht m

A. Shoshani, A. Sim, and J. Gu. Storage resource masagesential components for the grid. In J. Nabrzyski, Jogthand
J. Weglarz, editorsGrid Resource Management: State of the Art and Future Tre20033.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hldaaishnan. Chord: A Scalable Peer-to-peer Lookup Serfacénternet
Applications. InProc. SIGCOMM San Diego, CA, Aug. 2001.

J. Strickland, V. Freeh, X. Ma, and S. Vazhkudai. GowernAutonomic throttling for aggressive idle resource saing. In
Proceedings of the 2nd IEEE International Conference oroAaimic Computing2005.

A. Szalay and J. Gray. The world-wide telescoBeience293(14):2037-2040, 2001.

D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegald J. Izaguirre. Separating abstractions from resouncasdctical storage
system. InProceedings of Supercomputjri2005.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A st#é distributed file system. Iroc. SOSPpages 224-237, Saint-Malo,
France, Oct. 1997.

S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tamnade and S. Scott. Freeloader: Scavenging desktop stoesgences for
bulk, transient data. IRroceedings of Supercomputjri2P05.

S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tamnade T. Simon, and S. Scott. Constructing collaborativektigs storage
caches for large scientific datasef68CM Transactions on Storage (TQ&3):221-254, 2006.

S. Vazhkudai, J. Schopf, and |. Foster. Predicting teggmance of wide-area data transfers. Pimceedings of the 16th Int'l
Parallel and Distributed Processing Symposium (IPDPS 202Q02.

R. Wolski, N. Spring, and J. Hayes. The Network Weathervie: A distributed resource performance forecastingise for
metacomputingFuture Generation Computing Systerh§(5):757—-768, 1999.

R. Zhang and Y. C. Hu. Borg: A hybrid protocol for scakafpplication-level multicast in peer-to-peer networks.Ptoc. 13th
NOSSDAV Workshogune 2003.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapes&n Infrastructure for Fault-Resilient Wide-area Locatiand Routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, ApO20

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and Ji&wwicz. Bayeux: An Architecture for Scalable and Fdalerant
Wide-Area Data Dissemination. FProc. 11th NOSSDAV Workshaojune 2001.

14

